Corning ${ }^{\circledR}$ ClearCurve ${ }^{\circledR}$ ZBL Optical Fiber Product Information

How to Order

Contact your sales
representative, or call
the Optical Fiber Customer
Service Department:
Ph: 1-607-248-2000 (U.S. and Canada)
+44-1244-525-320 (Europe)
Email: cofic@corning.com
Please specify the fiber type, attenuation, and quantity when ordering.

Bend Performance and Compatibility
Corning ${ }^{\oplus}$ ClearCurve ${ }^{\circledR}$ ZBL optical fiber delivers the best macrobending performance in the industry while maintaining compatibility with current optical fibers, equipment, practices and procedures. This full-spectrum single-mode optical fiber, when subjected to smaller radii bends, experiences virtually no signal loss. ClearCurve ZBL fiber exceeds the most stringent bend performance requirements of ITU-T Recommendation G.652.D and the installed base of SMF-28e ${ }^{\oplus}$ and SMF-28e+ ${ }^{\oplus}$ fibers. Now network planners and designers are able to design optical fiber into much more challenging installations and environments; cable designers can offer optical cables with an unmatched ruggedness for easier installation and handling.

Optical Specifications

Maximum Attenuation Wavelength (nm)	Maximum Value* $(\mathrm{dB} / \mathrm{km})$
1310	≤ 0.35
$1383^{* *}$	≤ 0.35
1490	≤ 0.24
1550	≤ 0.20
1625	≤ 0.23

*Alternate attenuation offerings available upon request.
** Attenuation values at this wavelength represent post-hydrogen aging performance.

Attenuation vs. Wavelength

Range (nm)	Ref. λ (nm)	Max. α Difference $(\mathrm{dB} / \mathrm{km})$
$1285-1330$	1310	0.03
$1525-1575$	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength
(λ) by more than the value α.

Macrobend Loss Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
5	1	1550	≤ 0.10
5	1	1625	≤ 0.30

*The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

Point Discontinuity Wavelength (nm)	Point Discontinuity (dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength ($\lambda_{\text {cc }}$)
$\lambda_{c c} \leq 1260 \mathrm{~nm}$

Mode-Field Diameter Wavelength (nm)	MFD
$(\mu \mathrm{m})$	
1310	8.6 ± 0.4
1550	9.65 ± 0.5

Dispersion Wavelength (nm)	Dispersion Value $[\mathrm{ps} /(\mathrm{nm} \cdot \mathrm{km})]$
1550	≤ 18.0
1625	≤ 23.0

Zero Dispersion Wavelength $\left(\lambda_{0}\right): 1304 \mathrm{~nm} \leq \lambda_{0} \leq 1324 \mathrm{~nm}$ Zero Dispersion Slope $\left(\mathrm{S}_{0}\right): \leq 0.092 \mathrm{ps} /\left(\mathrm{nm}^{2} \cdot \mathrm{~km}\right)$

Polarization Mode Dispersion (PMD)

	Value ($\mathrm{ps} / \sqrt{ } \mathrm{km}$)
PMD Link Design Value	$\leq 0.06^{*}$
Maximum Individual Fiber PMD	≤ 0.2

*Complies with IEC 60794-3: 2001, Section 5.5, Method 1, ($m=20, \mathrm{Q}=0.01 \%$), September 2001.

The link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMD ${ }_{0}$). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

Dimensional Specifications

Glass Geometry			Coating Geometry	
Fiber Curl	$\geq 4.0 \mathrm{~m}$ radius of curvature		Coating Diameter	$242 \pm 5 \mu \mathrm{M}$
Cladding Diameter	$125.0 \pm 0.7 \mu \mathrm{M}$		Coating-Cladding Concentricity	$<12 \mu \mathrm{M}$
Core-Clad Concentricity	$\leq 0.5 \mu \mathrm{M}$			

Cladding Non-Circularity $\leq 0.7 \%$

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation $1310 \mathrm{~nm}, 1550 \mathrm{~nm}$, and 1625 nm $(\mathrm{~dB} / \mathrm{km})$
Temperature Dependence	$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} *$	≤ 0.05
Temperature Humidity Cycling	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ up to $98 \% \mathrm{RH}$	≤ 0.05
Water Immersion	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Heat Aging	$85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Damp Heat	$85^{\circ} \mathrm{C}$ at $85 \% \mathrm{RH}$	≤ 0.05
${ }^{*}$ Reference temperature $=+23^{\circ} \mathrm{C}$		
Operating Temperature Range: $-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Mechanical Specifications		

Proof Test
The entire fiber length is subjected to a tensile stress $\geq 100 \mathrm{kpsi}(0.69 \mathrm{GPa})$.*
*Higher proof test levels available.
Length
Fiber lengths available up to $25.2 \mathrm{~km} /$ spool.

Performance Characterizations

Characterized parameters are typical values.

Numerical Aperture	$1310 \mathrm{~nm}: 0.14$
Effective Group Index of Refraction $\left(\mathrm{N}_{\text {eff }}\right)$	$1310 \mathrm{~nm}: 1.4670$
	$1550 \mathrm{~nm}: 1.4677$
Fatigue Resistance Parameter $\left(\mathrm{N}_{\mathrm{d}}\right)$	20
Coating Strip Force	Dry: $0.6 \mathrm{lbs} .(3 \mathrm{~N})$
Rayleigh Backscatter Coefficient (for 1 ns	$1310 \mathrm{~nm}:-77 \mathrm{~dB}$
Pulse Width)	$1550 \mathrm{~nm}:-82 \mathrm{~dB}$

